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Abstract
We investigate the formation of wrinkles and bulging in single-layer graphene sheets using an
equivalent atomistic continuum nonlinear hyperelastic theory for nanoindentation and
nanopressurization. We show that nonlinear geometrical effects play a key role in the
development of wrinkles. Without abandoning the classical tension field membrane theory, we
develop an enhanced model based upon the minimization of a relaxed energy functional in
conjunction with nonlinear finite hyperelasticity. Formation of wrinkles are observed in
rectangular graphene sheets due to the combination of induced membrane tension and edge
effects under external pressure.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Spontaneous ripples and wrinkling have been identified for the
first time by Meyer et al [1] on free-standing graphene sheets
through a vacuum between metal struts. A taxing problem
is the explanation of the origin of the wrinkles, as well as a
phenomenological description of the mechanics involved in
the generation of ripples. Edge stress-induced warping and
instability has been investigated using both an analytical [2]
and first-principles study [3]. The existence of stress in
suspended graphene sheets has also been confirmed by other
authors [4]. More recently the folding of graphene sheets
has been discussed in [5]. Fasolino et al [6] have assumed
possible thermal fluctuations as the cause of the ripples. This
hypothesis has been challenged by Thompson-Flagg et al [7],
who proposed a deformation mechanism induced by random
distributions of OH groups over the free-standing graphene
sheets. MD simulations using the MEAM potential [8] show
that the functional groups induce localized lengthening of
the C–C bonds, with static buckling similar to the ones in
leaves. When 20% of the graphene sheet surface is covered
by adsorbates, the ripples simulated by the MD approach are
consistent with the experimental results (2–20 Å height over
200 Å of length). The origin of wrinkles and ripples due to the
presence of OH groups is interesting, in view of the role that

these adsorbates play in the generation of graphene [9, 10].
It is, however, important to distinguish between two separate
issues: the intrinsic corrugation of graphene and wrinkling
brought on by a loading of the graphene sheet. The former
represents a corrugation of the whole sample, while the latter is
localized in finite regions at the sample edges (the Saint Venant
effect). In this paper we study the possibility of wrinkling
of a graphene sheet without considering the effect of the OH
groups, which may be considered as impurities. We assume
that the graphene sheet is without any ripples before the
application of pressure and nanoindentation.

Graphene sheets have been proposed as platforms
for mass and/or gas sensors due to the sensitivity to
change in bending/membrane stiffness under thermal and
mechanical (static and dynamic) loading [11–18]. While
most of the models related to out-of-plane deformation of
graphene sheets available in the open literature are based
on combinations of flexural and membrane stiffness [19–23],
membrane-dominated deformations are the ones that provide
the phenomena of wrinkles and ripples in continuum-like
structural plates [24–27]. In this work, we show that wrinkling
phenomena on graphene sheets can be described using a
hyperelastic representation of the graphene sheets subjected
to external out-of-plane mechanical loading. The model is
validated against both existing experimental and numerical
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results from atomistic and molecular mechanics simulations
related to point force loading, and used to predict bulging and
ripples in rectangular graphene sheets subjected to external
pressure, which could represent external mass or functional
group distributions.

2. Mathematical model and analysis

Experimental data on the out-of-plane properties of graphene
have been made available on multilayer [19] and single-
layer sheets (SLGS) loaded with atomic force microscope
(AFM) tips [28]. Specific out-of-plane SLGS simulations have
been carried out using a meshless approach [29], continuum
mechanics representations based on MD force models [22, 30],
while the flexural behaviour of SLGS has been modelled in
resonance mode using continuum- and truss-like structural
assemblies [23, 31–39]. Due to the intrinsic nature of
membrane structures (such as a graphene sheet), which can
withstand loading normal to the local tangent plane by means
of in-plane tension stresses, nonlinear geometric effects cannot
be disregarded in the formulation. Hence, nonlinear continuum
mechanics principles [24] are vital instruments in order to
capture the nonlinearity of the problem. Let {Nα}α=1,2,3 be
the unit orthogonal triad which defines the principal directions
corresponding to the right Cauchy–Green deformation tensor
C. Following the deformation process defined by the gradient
tensor F , the triad transforms into the unit orthogonal triad
{nα}α=1,2,3 corresponding to the principal directions of the
left Cauchy–Green deformation tensor b according to λαnα =
FNα, where λα symbolizes the principal stretches. The vector
components of both triads have been ordered such that the third
one is always aligned along the normal to the local tangent
plane of the membrane. Thus, the Cauchy stress tensor σ

admits a spectral decomposition in terms of its eigenvalues σαα
as

σ =
2∑

α=1

σααnα ⊗ nα; σαα = λα

J

∂ψ

∂λα
;

J = λ1λ2λ3

(1)

where ψ stands for the Helmholtz free energy functional for a
plane stress Saint-Venant–Kirchhoff hyperelastic material and
J represents the Jacobian of the deformation. The evaluation of
the terms σαα in equation (1) can be straightforwardly carried
out as the in-plane energy functional ψ is formulated as

ψ(λ1, λ2) = λ̄

4
(λ2

1 + λ2
2 − 2)+ μ

4
(λ2

1 − 1)(λ2
2 − 1) (2)

where λ̄ = 2λμ
λ+2μ and λ and μ symbolize the well-

known Lamè coefficients. Following [24], the symmetrized
constitutive fourth-order tensor c can be formulated in its
spectral decomposition as

c =
2∑

α,β=1

1

J

∂2ψ

∂ lnλα∂ lnλβ
t
αβ

1 −
2∑
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2λα
J
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αβ

2

+
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[
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2
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where
t
αβ

1 = nα ⊗ nα ⊗ nβ ⊗ nβ

t
αβ

2 = nα ⊗ nα ⊗ nα ⊗ nα

t
αβ

3 = (
nα ⊗ nβ + nβ ⊗ nα

) ⊗ (nα ⊗ nβ + nβ ⊗ nα).

In equation (3), when λ1 = λ2 the term within the brackets on
the right-hand side must be replaced by

1

4J

[
∂2ψ

∂ lnλβ∂ ln λβ
− ∂2ψ

∂ ln λα∂ ln λβ

]
. (4)

If the prestressing effect is considered prior to the load
on graphene sheets, it was shown [40, 41] that the total
deformation path of a prestressed membrane structure can
be decomposed into two successive loading stages. In the
first stage, the membrane is prestressed, deforming from
an initial unstressed configuration �0 to an intermediate
prestressed configuration �p. In the second stage, in-service
loads are applied, deforming the prestressed membrane to
its final configuration �. As a result, a modified Saint-
Venant–Kirchhoff hyperelastic energy functional ψmod is
proposed [40, 41] in order to account for prestressing effects:

ψmod(E) = ψ(E)+ ψp(E); ψp(E) = σ p:E. (5)

Here σ p represents the in-plane prestressing stress tensor. The
in-plane Green Lagrange strain tensor E gathers the strain
as a result of the deformation during the second loading
stage. Moreover, in [42] it is demonstrated that the functional
ψmod is convex as established in [43], thus well defined for
minimization purposes. It is interesting to notice that tensors
σ p and E do not commute in general, except when σ p is
isotropic. Therefore, the final Cauchy stress tensor displayed in
formula (1) must be modified to include the prestressing effect.
Thus, the functional ψ is replaced by ψmod in the second of the
formulae in (1). The constitutive fourth-order tensor does not
need any modification.

3. Wrinkling considerations

Without abandoning the membrane theory, we develop an
enhanced model with the purpose of avoiding the spurious
compressive stresses generated by the classical tension field
theory. In this approach, following [42–44], the ordinary
energy functional is replaced by a relaxed energy functional.
The in-plane principal stresses are denoted by σ11 and σ22 and,
after arranging in such a way that σ11 � σ22, the three states of
a wrinkled membrane can be summarized as: taut state (σ11 >

0, σ22 > 0), wrinkled state (σ11 > 0, σ22 = 0) and slack state
(σ11 = 0, σ22 = 0). In this way, the onset of wrinkling can
be characterized when the smallest of the principal stresses
σ22 reaches a null value. When this consideration is taken
into account, a kinematic constraint can be established between
both in-plane principal stretches λ1 and λ2, as

λ2

J

∂ψmod

∂λ2
= 0. (6)
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Thus, yielding

λ2 = f (λ1) :=
[

1 + ν(1 − λ2
1)+

2(ν2 − 1)

E

(
nT

2σ pn2
)]1/2

(7)
where in the above formula ν = λ

2(λ+μ) is the classical Poisson

ratio and E = μ(2μ+3λ)
λ+μ represents Young’s modulus. This

constraint f (λ1) can be substituted into the in-plane energy
functional ψmod defined in equation (5) to obtain a modified
energy functional ψmod′

:

ψmod′
(E) = ψ ′(E)+ ψp′

(E) (8)

in which

ψ ′(E) = E

8
(λ2

1 − 1)2 (9)

and

ψp′
(E) = (nT

1σ pn1)
1
2 (λ

2
1 − 1)+ (nT

2σ
pn2)

1
2 ( f (λ1)

2 − 1).
(10)

Thus, the modified Cauchy stress tensor σ ′ takes the form

σ ′ = σ11n1 ⊗ n1; σ11 = λ1

J

∂ψmod′

∂λ1
. (11)

After applying some straightforward algebra, it yields

σ11 = λ2
1

J

[
E

2
(λ2

1 − 1)+ (
nT

1σ pn1
) + ν

(
nT

2σ pn2
)]
. (12)

Analogously, the modified constitutive fourth-order tensor
can be deduced from equation (3) after replacing ψ with ψ ′
where required, resulting in

c′ = Eλ4
1

J
t1 + Eλ2

1λ
2
2

4J

(λ2
1 − 1)

(λ2
1 − λ2

2)
t2 (13)

where
t1 = n1 ⊗ n1 ⊗ n1 ⊗ n1

t2 = (n1 ⊗ n2 + n2 ⊗ n1)⊗ (n1 ⊗ n2 + n2 ⊗ n1).

Finally, the condition that must be fulfilled for wrinkling to
occur in both principal directions is that the principal Cauchy
stresses σ11 and σ22 must be zero simultaneously:

λ1

J

∂ψmod

∂λ1
= 0. (14)

Thus, resulting in

λ1 = g :=
[

1 + 2(ν − 1)

E

(
nT

2σ pn2
)]1/2

. (15)

It is important to emphasize that, on the one hand, the
methodology outlined here takes into consideration large
strains in a manner consistent with classical continuum
mechanics, and on the other hand, is derived according to
standard tension field theory, where the mechanical membrane
response is predominant over the bending response. Indeed,
in [28] it is reported that, even at maximum curvature,

the energy from bending in the graphene membrane is
three orders of magnitude smaller than the energy from in-
plane strain. It is also observed that this methodology
allows the consideration of prestress effects as well as more
sophisticated constitutive models (if needed) through a suitable
modification of Helmholtz’s free energy functional. Finally,
this formulation enables the study of wrinkling patterns
through the visualization of the null principal Cauchy stress
regions.

4. Results and discussion

The first example discussed in this section is a circular flat
graphene sheet, with its boundary fully clamped, which is
subjected to a transverse point load applied at its centre.
Isotropic elastic mechanical properties are considered to model
the constitutive behaviour of the graphene sheet.

As is well known, there is no closed-form analytical
solution that accounts for both finite (i.e. large) deformation
as well as possible pretension in a material. However, in [28],
the following force–displacement relationship is considered:

F = σ0hπδ + Eh(aq3)

(
δ

a

)3

(16)

where F is the applied force, δ is the deflection at the centre
point, a is the radius of the circular membrane, σ0 is a
possible in-plane pretension stress of the graphene membrane,
q = 1/(1.05 − 0.15ν − 0.16ν2) is a dimensionless parameter
expressed in terms of the Poisson ratio ν, E is the so-called
Young’s modulus and h is the thickness of the graphene
membrane. This simple approximated formula can be regarded
as valid in the case of axisymmetric membranes subjected to
initial in-plane prestress, a centrally located transverse point
load and fulfilling the assumption of moderate displacements,
the latter as highly nonlinear strain terms appearing under
very large displacements are neglected in its derivation (von
Karman compatibility equations). In [28], an extensive series
of experimental results were fitted to the above formula (16)
under the free parameters E and σ0. In the results presented
in figure 1, two alternative radii are considered, namely a =
0.5 and 0.75 μm for the same thickness h = 0.335 nm.
Following [28], ν = 0.165 and average values of Eh =
342 nN nm−1 and σ0h = 0.34 nN nm−1 are employed.
Uncertainty analyses for the various measured variables during
the experiments are also presented in [28]. In the present study,
a finite element implementation of the algorithm described in
section 3 is employed in order to compare its validity with
respect to experimental results. For computational purposes,
a sufficiently refined mesh is used comprised of 1936 three-
noded isoparametric linear finite elements to ensure mesh
convergence of the numerical solution (only one quarter of
the membrane is analysed under suitable boundary conditions).
Numerical and experimental results are extremely similar,
especially for moderate values of displacement (up to 1500 nN
of force). It can be noted that, in the large strain regime, the
experimental and numerical results start to differ slightly. This
indicates that the inclusion of a more sophisticated hyperelastic
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Figure 1. Force (nN) versus indentation deflection (nm) computation
for a single-layer graphene sheet with circular geometry under
central point load. The proposed approach is compared with
experimental results for two different radii. Numerical and
experimental results are close for moderate values of displacements:
however, they start to differ for higher values of displacements.

constitutive model (i.e. neo-Hookean or Mooney–Rivlin) [24]
could help to characterize more accurately the mechanical
behaviour of the graphene sheet.

A second example is studied, where a circular flat
graphene sheet of radius 110 Å and Poisson’s ratio ν = 0.19
is subjected to a point load applied at its centre, ensuring
that its boundary is fully clamped. Two loading scenarios
are taken into consideration: in the first, a point load is
applied at the centre of the circular graphene sheet whereas
in the second the same load is distributed across a circular
area of radius 10 Å, which is the indenter loading scenario.
Young’s modulus E and the thickness h for the numerical
experiment are taken from Hemmasizadeh et al [30]. This
problem is analysed in [30] considering small strains and
bending deformation. A cubic polynomial relating the applied
load and deflection at the centre of the graphene membrane
is best fitted to the results provided by molecular mechanics
simulation in Medyanik et al [45]. Consequently, the values
of E = 5.864 eV Å

−3
and h = 1.37 Å taken from [30] are

here adopted for subsequent numerical simulations. Figure 2
shows the results according to various methods. The value
of the thickness h varies in the open literature, whether
first-or second-generation Tersoff–Brenner potentials [46], or
equivalent atomistic—continuum models for SLGS loaded in-
plane [38]. A COMPASS force field applied to continuum
plate von Karman equations with membrane field has provided
a value of h = 0.52 Å for a point load circular SLGS of
80 Å [47]. Hemmasizadeh et al [30] compare the molecular
dynamics simulation with their computational finite element
analysis by using a four-node doubly curved shell (accounting
for bending stiffness) elements. In the present study, a pure
membrane formulation with a wrinkling algorithm based upon
a modified energy functional is used for the same example in
order to demonstrate the accuracy of the method. For both
loading cases, the formulation presented shows accurate results

Figure 2. Force (eV Å
−1

) versus indentation deflection (Å)
computation for a single-layer graphene sheet with circular
geometry. The proposed approach and few existing approaches are
compared with molecular mechanics simulation. All the methods
show a softening effect compared to the molecular mechanics
simulation results. The approach proposed here is the closest to the
molecular mechanics simulation for the large deflection cases.

Figure 3. Maximum Cauchy principal stress (eV Å
−3

) of a clamped
circular graphene sheet under a point load applied at the centre (FEM
mesh: 1936 three-noded isoparametric linear finite elements). The
colour bar shows intensity of stress in the centrally loaded graphene
sheet. The maximum stress occurs below the application of the load.

in comparison with the molecular mechanics simulation,
despite not including any bending stiffness. For computational
purposes, a sufficiently refined mesh is used comprised of 1936
three-noded isoparametric linear finite elements to ensure mesh
convergence of the numerical solution. The maximum Cauchy
principal stress contour plot is shown in figure 3. A horizontal
colour bar at the bottom of the figure displays the range of
values for the maximum Cauchy principal stress, ranging from
0.125 eV Å

−3
near the clamped boundary up to 0.65 eV Å

−3

located near the indentation load, highlighting, as expected, the
Saint-Venant effect.

With the purpose of investigating the behaviour of the
graphene sheet undergoing wrinkling, a different example is
analysed. A square flat graphene membrane of side 220 Å
is subjected to an internal pressure load p = 5.165 29 ×
10−4 eV Å

−3
, acting normal to the local tangent plane of the

membrane, which introduces an extra nonlinearity within the
algorithm which requires suitable consideration [48]. The
boundary of the squared membrane is free to move but forced

4
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Figure 4. The bulging of graphene sheets under pressure:
(top) minimum Cauchy principal stress (eV Å

−3
), (bottom)

maximum Cauchy principal stress (eV Å
−3

), FEM mesh: 7200
three-noded isoparametric linear finite elements. Wrinkling can be
observed on every side of the SLGS.

to remain within its original plane. The material properties
and the thickness of the specimen are identical to those of
the previous example. Figure 4 displays contour plots for
the minimum Cauchy principal stress (top) and the maximum
Cauchy principal stress (bottom). Colour bars at the bottom
of every figure show the range of values for the minimum
(top) and the maximum (bottom) Cauchy principal stress. As
can be observed, wrinkles start to develop in every side of
the SLGS under consideration, where the maximum values
for the maximum Cauchy principal stress are attained, as well
as null values of the minimum Cauchy stress. Moreover,
it can be noticed that no negative values for the minimum
Cauchy principal stress are achieved, as the range of values
expands from 0 to 0.045 eV Å

−3
, demonstrating the use of the

wrinkling algorithm employed. For computational purposes,
a sufficiently refined mesh is used comprised of 7200 three-
noded isoparametric linear finite elements to ensure mesh
convergence of the numerical solution. This methodology
enables the visualization of wrinkling patterns by observing
areas of null minimum principal Cauchy stress, without the
need to resort to computationally expensive algorithms with
shell capability. In addition, as wrinkling patterns appear only
in localized finite regions (i.e. the Saint-Venant effect) of the
graphene sheet where extreme curvature values are reached,
this tension field algorithm remains extremely valuable and

enables the extraction of information related to overall force–
displacement relationship or mechanical properties such as
Young’s modulus and pretension stress.

5. Conclusion

In this paper we considered wrinkling and bending of
single-layer graphene sheets under nanoindentation and
nanopressurization. Both rectangular and circular graphene
sheets are considered. The proposed approach employs pure
tension field membrane theory, neglecting bending effects,
where minimization of a relaxed energy functional is carried
out within the context of large-deformation finite strains in
order to account for geometric nonlinear effects. One of
the main novelties is the consistent and rigorous treatment
of nonlinearity and prestress, crucial for the out-of-plane
deformation of graphene sheets. The formation of wrinkling
patterns can be observed through the visualization of the
null principal stress regions. The presented methodology
shows excellent agreement with published numerical and
experimental results on out-of-plane deflection of graphene
sheets due to nanoindentation. We also studied the bulging
of rectangular graphene sheets under pressure where the
formation of wrinkles is observed along the edges.
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